Cambridge International AS & A Level ## MATHEMATICS (9709) P2 TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS Chapter 3 Trigonometry 79. 9709_s20_qp_21 Q: 5 (a) The diagram shows part of the curve with equation $y = x^3 \cos 2x$. The curve has a maximum at the point M. | Show that the x-coordinate of M satisfies the equation $x = \sqrt[3]{1.5x^2} \cot 2x$. | [3] | |---|-----| | | .0 | | | | | *.(| *** | and 0.60. | | | | | | |-----------|----------------------|-------|-------|-------|-------| | | | | | | | | | ••••• | | | | | | | | | | | | | ••••• | ••••• | ••••• | | | ••••• | | | | | | | | | | ••••• | | ••••• | ••••• | ••••• | ••••• | | ••••• | ••••• | | | | | | | | O. | . 0 | | | | nt figures. Give the | Jan 1 | \Q | • | • | 80. $9709_s20_qp_22$ Q: 6 | The 1 | nolyno | mial n | (\mathbf{r}) | ic | defined | hv | |-------|----------|--------|----------------|----|----------|-------------| | 11110 | DOLVIIO. | шиаг р | リスノ | 18 | delilled | ν_{ν} | $$p(x) = 6x^3 + ax^2 - 4x - 3,$$ where a is a constant. It is given that (x + 3) is a factor of p(x). | (a) | Find the value of a. | [2] | |------|--|----------| <u>,</u> | | | | 3) | | | | | | (I-) | Using this value of a factories $n(u)$ completely. | [2] | | (D) | Using this value of a , factorise $p(x)$ completely. | [3] | Hence solve the equation $p(\csc \theta) = 0$ for $0^{\circ} < \theta < 360^{\circ}$. | | |--|-------------| _ | | | | | | 40 | | | 100 | | | | | | | | | | | | | | | | ••••• | | | | | | | | <u></u> | ••••• | 81. $9709_{20}qp_{21}$ Q: 6 It is given that $3 \sin 2\theta = \cos \theta$ where θ is an angle such that $0^{\circ} < \theta < 90^{\circ}$. | (a) | Find the exact value of $\sin \theta$. | [2] | |------------|--|-----| A C | | (b) | Find the exact value of $\sec \theta$. | [2] | (c) | Find the exact value of $\cos 2\theta$. | [2] | 82. | $9709_{2} - 20_{2} = 22 + 22 = 22 = 22 = 22 = 22 = 22 = $ | |-----|--| | | Solve the equation $7 \cot \theta = 3 \csc \theta$ for $0^{\circ} < \theta < 90^{\circ}$. [3] | 30 | | | 29 | Solve the equation $\sec^2 \theta + \tan^2 \theta = 5 \tan \theta + 4$ for $0^\circ < \theta < 180^\circ$. Show all necessary working. [| 4] | |---|-----| | | ••• | | | | | | | | | | | | | | | ••• | | | ••• | | | ••• | | | ••• | | | | | | | | | | | | | | 70 | ••• | | | ••• | | | ••• | | | ••• | | | | | | | | | | | | | | | ••• | | | ••• | | | ••• | | | ••• | | | | | | | | | | | | ••• | 84. $9709_s19_qp_21~Q: 7$ | | Show that $2 \csc 2\theta \cot \theta \equiv \csc^2 \theta$. | [3 | |---------------|---|--| 40 | | | | | | | | | | | | 4 | | | V | ************************************* | ••\ | Harris 150 4 150 4 | ro | | (ii) | Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$. | [2 | | (ii) | Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$. | [2 | | (ii) | Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$. | [2 | | (ii) | Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$. | [2 | | (ii) | Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$. | [2 | | ii) | | | | ii) | Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$. | | | ii) | iii) | | | | ν | working. | |-----|----------| •• | | | | | | •• | | | | | | •• | | | | | | •• | | | | | | •• | | | | | | •• | . ~ ~ ~ | | | | | | | | •• | | | | | | •• | | | | | | •• | | | | | | •• | | | | | | •• | | | | | | • • | | | | | | •• | | | | | 85. 9709_s19_qp_22 Q: 7 (a) | (i) | Express $4 \sin \theta + 4 \cos \theta$ in the form $R \sin(\theta + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. [3] | |---------------|---| (ii) | Hence find the smallest positive value of θ satisfying the equation $4 \sin \theta + 4 \cos \theta = 5$. [2] | | | | | | | | | | | • | **(b)** Solve the equation | 1 | cot | 22 | _ 5 | і т | tan | v | |---|-----|--------|-----|------------|------|------| | 4 | COL | . Z.X. | = |) + | 1411 | . X. | | for $0 < x < \pi$, showing all necessary working and giving the answers correct to 2 decimal places. [6] | |---| 86. 9709_w19_qp_21 Q: 6 (a) Showing all necessary working, solve the equation | S | $ec \alpha \csc \alpha = 7$ | |---|-----------------------------| | for $0^{\circ} < \alpha < 90^{\circ}$. | [5] | .0 | |-----| | | | | | | | 20 | | | | 70 | | | | | | | | *** | | | | | | | | | | | (b) Showing all necessary working, solve the equation | for $0^{\circ} < \beta < 90^{\circ}$. | [4] | |--|-----| | | | | | | | | | | | | | | 0- | | | | | • (|) / | | | | | | | | (3) | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | $\sin(\beta + 20^\circ) + \sin(\beta - 20^\circ) = 6\cos\beta$ 87. $9709_{y19_{qp}_{2}} = 22 Q: 8$ | | value of α correct to 2 decimal places. | |---|---| AUT 1 | | | | | | | | | | | | | | | 477 | | | | | | | | | | | | House selve the counties 0.5 and 0.12 siz 0.00 for 00 4.0 4.2600 | |) | Hence solve the equation $0.5 \cos \theta - 1.2 \sin \theta = 0.8$ for $0^{\circ} < \theta < 360^{\circ}$. | (iii) | Determine the greatest and least possible values of $(3 - \cos \theta + 2.4 \sin \theta)^2$ as θ varies. [3] | |-------|---| 88. | 9709_w18_qp_21 Q: 3 | |-----|---| | | Solve the equation $\sec^2 \theta = 3 \csc \theta$ for $0^\circ < \theta < 180^\circ$. [5] | | | | | | | | | | | | | | | | | | .01 | $89.\ 9709_w18_qp_22\ Q\hbox{:}\ 7$ | (i) | Use the factor theorem to show that $(2x + 3)$ is a factor of | | |------|--|-------| | | $8x^3 + 4x^2 - 10x + 3.$ | [2] | | | | | | | | ••••• | | | | ••••• | | | | ••••• | | | | | | | | | | | | | | | | | | | 29 | ••••• | | | | ••••• | | (ii) | Show that the equation $2\cos 2\theta = \frac{6\cos \theta - 5}{2\cos \theta + 1}$ can be expressed as | | | () | $2\cos\theta + 1$ $8\cos^{3}\theta + 4\cos^{2}\theta - 10\cos\theta + 3 = 0.$ | [2] | | | $8\cos^{2}\theta + 4\cos^{2}\theta - 10\cos\theta + 3 = 0.$ | [3] | | | | | | | | | | | | | | | | | | | NO.0 | ••••• | | | | ••••• | | | | ••••• | | | *** | ••••• | ••••• | | | | ••••• | | | | | | • | $= \frac{6\cos\theta - 5}{2\cos\theta + 1} \text{ for } 0^{\circ} < \theta < 360^{\circ}.$ | | |---|--|-----| 0. | | | | .00 | | | | .0 | | | | 4 | | | | | | | | | | | | | | | 69 | | | | | | | | . 0° | | | | | | | | | | | | <u> </u> | ## **Additional Page** | If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. | |---| NO. | ** | | | | | 90. $9709_m17_qp_22$ Q: 2 | (i) | Given that $\tan 2\theta \cot \theta = 8$, show that $\tan^2 \theta = \frac{3}{4}$. | [3] | |------|--|-------| ••••• | | | | | | (ii) | Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$. | [2] | | (ii) | Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$. | [2] | | (ii) | Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$. | [2] | | (ii) | Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$. | [2] | | (ii) | Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$. | [2] | | (ii) | Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$. | [2] | | (ii) | Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$. | [2] | | (ii) | 91. 9709_s17_qp_21 Q: 5 | | | aces. | | | |-------------|-------------------------------------|---|--|------| ••••• | | •••••• | •••••• | | | | | | | | | ••••• | ••••••••••• | • | | | | | | | | A () | | ••••• | | | ••••• | | | | | | . | Hence solve | he equation $2\cos\theta$ - | $+ (\sqrt{5}) \sin \theta = 1$ | For $0^{\circ} < \theta < 360^{\circ}$. | | | | | ((3)31110 = 1 | | | | | • • • • • • • • • • • • • • • • • • | ((3)) | | | | | | | | | | | | (۷) | | | | | | | | | | | ? | | | | | | NO2 | | | | | | 100 | | | | | | | (10) | 92. | 9709_w17_qp_21 Q: 2 | |-----|---| | | Solve the equation $5\cos\theta(1+\cos 2\theta)=4$ for $0^{\circ} \le \theta \le 360^{\circ}$. [5] | .0 | | | | | | | | | | | | | | | | | | C ² | | | ~ | 93. $9709_s16_qp_21$ Q: 2 Solve the equation $5 \tan 2\theta = 4 \cot \theta$ for $0^{\circ} < \theta < 180^{\circ}$. [5] 94. 9709_s16_qp_22 Q: 4 (i) Show that $\sin(\theta + 60^\circ) + \sin(\theta + 120^\circ) \equiv (\sqrt{3})\cos\theta$. [3] (ii) Hence (a) find the exact value of $\sin 105^{\circ} + \sin 165^{\circ}$, [2] (b) solve the equation $\sin(\theta + 60^\circ) + \sin(\theta + 120^\circ) = \sec \theta$ for $0^\circ \le \theta \le 180^\circ$. [3] 95. 9709_w16_qp_21 Q: 7 The polynomial p(x) is defined by $$p(x) = ax^3 + 3x^2 + bx + 12,$$ where a and b are constants. It is given that (x + 3) is a factor of p(x). It is also given that the remainder is 18 when p(x) is divided by (x + 2). - (i) Find the values of a and b. [5] - (ii) When a and b have these values, - (a) show that the equation p(x) = 0 has exactly one real root, [4] - (b) solve the equation $p(\sec y) = 0$ for $-180^{\circ} < y < 180^{\circ}$. [3] 96. $9709_{\mathbf{w}}16_{\mathbf{q}}p_{\mathbf{2}}2$ Q: 7 The diagram shows the curve with parametric equations $$x = 4\sin\theta$$, $y = 1 + 3\cos\left(\theta + \frac{1}{6}\pi\right)$ for $0 \le \theta < 2\pi$. - (i) Show that $\frac{dy}{dx}$ can be expressed in the form $k(1 + (\sqrt{3}) \tan \theta)$ where the exact value of k is to be determined. [5] - (ii) Find the equation of the normal to the curve at the point where the curve crosses the positive y-axis. Give your answer in the form y = mx + c, where the constants m and c are exact. [5] 97. $9709_{\mathbf{w}}16_{\mathbf{q}}23$ Q: 7 - (i) Express $\sin 2\theta (3 \sec \theta + 4 \csc \theta)$ in the form $a \sin \theta + b \cos \theta$, where a and b are integers. [3] - (ii) Hence express $\sin 2\theta (3 \sec \theta + 4 \csc \theta)$ in the form $R \sin(\theta + \alpha)$ where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. - (iii) Using the result of part (ii), solve the equation $\sin 2\theta (3 \sec \theta + 4 \csc \theta) = 7$ for $0^{\circ} \le \theta \le 360^{\circ}$. 98. $9709_s15_qp_22$ Q: 3 It is given that θ is an acute angle measured in degrees such that $$2\sec^2\theta + 3\tan\theta = 22.$$ (i) Find the value of $\tan \theta$. [3] (ii) Use an appropriate formula to find the exact value of $\tan(\theta + 135^{\circ})$. [3] 99. 9709_w15_qp_21 Q: 3 - (i) Express $8 \sin \theta + 15 \cos \theta$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α correct to 2 decimal places. - (ii) Hence solve the equation $$8\sin\theta + 15\cos\theta = 6$$ for $$0^{\circ} \le \theta \le 360^{\circ}$$. [4] $100.\ 9709_w15_qp_22\ Q:\ 4$ The polynomial p(x) is defined by $$p(x) = 6x^3 + 11x^2 + ax + a,$$ where a is a constant. It is given that (x + 2) is a factor of p(x). - (i) Use the factor theorem to show that a = -4. [2] - (ii) When a = -4, - (a) factorise p(x) completely, [3] - **(b)** solve the equation $6 \sec^3 \theta + 11 \sec^2 \theta + a \sec \theta + a = 0$ for $0^\circ \le \theta \le 180^\circ$. [2] $101.\ 9709_w15_qp_23\ Q:\ 6$ - (i) Express $(\sqrt{5})\cos\theta 2\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α correct to 2 decimal places. [3] - (ii) Hence - (a) solve the equation $(\sqrt{5})\cos\theta 2\sin\theta = 0.9$ for $0^{\circ} < \theta < 360^{\circ}$, [4] - (b) state the greatest and least values of $$10 + (\sqrt{5})\cos\theta - 2\sin\theta$$ as θ varies. [2]