

Cambridge International AS & A Level

MATHEMATICS (9709) P2

TOPIC WISE QUESTIONS + ANSWERS | COMPLETE SYLLABUS

Chapter 3

Trigonometry

79. 9709_s20_qp_21 Q: 5

(a)

The diagram shows part of the curve with equation $y = x^3 \cos 2x$. The curve has a maximum at the point M.

Show that the x-coordinate of M satisfies the equation $x = \sqrt[3]{1.5x^2} \cot 2x$.	[3]
	.0
*.(

and 0.60.					
	•••••				
•••••	•••••	•••••			•••••
	•••••		•••••	•••••	
•••••	•••••		•••••	•••••	
					O.
				. 0	
	nt figures. Give the				
			Jan 1		
		\Q			
•					
•					

80. $9709_s20_qp_22$ Q: 6

The 1	nolyno	mial n	(\mathbf{r})	ic	defined	hv
11110	DOLVIIO.	шиаг р	リスノ	18	delilled	ν_{ν}

$$p(x) = 6x^3 + ax^2 - 4x - 3,$$

where a is a constant. It is given that (x + 3) is a factor of p(x).

(a)	Find the value of a.	[2]
		<u>,</u>
		3)
(I-)	Using this value of a factories $n(u)$ completely.	[2]
(D)	Using this value of a , factorise $p(x)$ completely.	[3]

Hence solve the equation $p(\csc \theta) = 0$ for $0^{\circ} < \theta < 360^{\circ}$.	
	_
	40
	100
	
	•••••
<u></u>	
	•••••

81. $9709_{20}qp_{21}$ Q: 6

It is given that $3 \sin 2\theta = \cos \theta$ where θ is an angle such that $0^{\circ} < \theta < 90^{\circ}$.

(a)	Find the exact value of $\sin \theta$.	[2]
		A C
(b)	Find the exact value of $\sec \theta$.	[2]
(c)	Find the exact value of $\cos 2\theta$.	[2]

82.	$9709_{2} - 20_{2} = 22 + 22 = 22 = 22 = 22 = 22 = 22 = $
	Solve the equation $7 \cot \theta = 3 \csc \theta$ for $0^{\circ} < \theta < 90^{\circ}$. [3]
	30
	29

Solve the equation $\sec^2 \theta + \tan^2 \theta = 5 \tan \theta + 4$ for $0^\circ < \theta < 180^\circ$. Show all necessary working. [4]
	•••
	•••
	•••
	•••
	•••
70	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••

84. $9709_s19_qp_21~Q: 7$

	Show that $2 \csc 2\theta \cot \theta \equiv \csc^2 \theta$.	[3
		40
		4
	V	*************************************
••\	Harris 150 4 150 4	ro
(ii)	Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$.	[2
(ii)	Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$.	[2
(ii)	Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$.	[2
(ii)	Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$.	[2
(ii)	Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$.	[2
ii)		
ii)	Hence show that $\csc^2 15^\circ \tan 15^\circ = 4$.	
ii)		
iii)		

ν	working.
••	
••	
••	
••	
••	
••	
	. ~ ~ ~
••	
••	
••	
••	
••	
• •	
••	

85. 9709_s19_qp_22 Q: 7

(a)

(i)	Express $4 \sin \theta + 4 \cos \theta$ in the form $R \sin(\theta + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. [3]
(ii)	Hence find the smallest positive value of θ satisfying the equation $4 \sin \theta + 4 \cos \theta = 5$. [2]
•	

(b) Solve the equation

1	cot	22	_ 5	і т	tan	v
4	COL	. Z.X.	=) +	1411	. X.

for $0 < x < \pi$, showing all necessary working and giving the answers correct to 2 decimal places. [6]

86. 9709_w19_qp_21 Q: 6

(a) Showing all necessary working, solve the equation

S	$ec \alpha \csc \alpha = 7$
for $0^{\circ} < \alpha < 90^{\circ}$.	[5]

.0
20
70

(b) Showing all necessary working, solve the equation

for $0^{\circ} < \beta < 90^{\circ}$.	[4]
	0-
• () /
(3)	
•	

 $\sin(\beta + 20^\circ) + \sin(\beta - 20^\circ) = 6\cos\beta$

87. $9709_{y19_{qp}_{2}} = 22 Q: 8$

	value of α correct to 2 decimal places.
	AUT 1
	477
	House selve the counties 0.5 and 0.12 siz 0.00 for 00 4.0 4.2600
)	Hence solve the equation $0.5 \cos \theta - 1.2 \sin \theta = 0.8$ for $0^{\circ} < \theta < 360^{\circ}$.

(iii)	Determine the greatest and least possible values of $(3 - \cos \theta + 2.4 \sin \theta)^2$ as θ varies. [3]

88.	9709_w18_qp_21 Q: 3
	Solve the equation $\sec^2 \theta = 3 \csc \theta$ for $0^\circ < \theta < 180^\circ$. [5]
	.01

 $89.\ 9709_w18_qp_22\ Q\hbox{:}\ 7$

(i)	Use the factor theorem to show that $(2x + 3)$ is a factor of	
	$8x^3 + 4x^2 - 10x + 3.$	[2]
		•••••
		•••••
		•••••
	29	•••••
		•••••
(ii)	Show that the equation $2\cos 2\theta = \frac{6\cos \theta - 5}{2\cos \theta + 1}$ can be expressed as	
()	$2\cos\theta + 1$ $8\cos^{3}\theta + 4\cos^{2}\theta - 10\cos\theta + 3 = 0.$	[2]
	$8\cos^{2}\theta + 4\cos^{2}\theta - 10\cos\theta + 3 = 0.$	[3]
	NO.0	•••••
		•••••
		•••••
	***	•••••
		•••••
		•••••

•	$= \frac{6\cos\theta - 5}{2\cos\theta + 1} \text{ for } 0^{\circ} < \theta < 360^{\circ}.$	
		0.
		.00
		.0
		4
	69	
	. 0°	
	<u> </u>	

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
NO.
**

90. $9709_m17_qp_22$ Q: 2

(i)	Given that $\tan 2\theta \cot \theta = 8$, show that $\tan^2 \theta = \frac{3}{4}$.	[3]
		•••••
(ii)	Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$.	[2]
(ii)	Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$.	[2]
(ii)	Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$.	[2]
(ii)	Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$.	[2]
(ii)	Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$.	[2]
(ii)	Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$.	[2]
(ii)	Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$.	[2]
(ii)		[2]

91. 9709_s17_qp_21 Q: 5

		aces.		
•••••		••••••	••••••	
•••••	•••••••••••	• • • • • • • • • • • • • • • • • • • •		
				A ()
•••••			•••••	
			.	
Hence solve	he equation $2\cos\theta$ -	$+ (\sqrt{5}) \sin \theta = 1$	For $0^{\circ} < \theta < 360^{\circ}$.	
		((3)31110 = 1		
	• • • • • • • • • • • • • • • • • •	((3))		
		(۷)		
	?			
	NO2			
	100			
		(10)		

92.	9709_w17_qp_21 Q: 2
	Solve the equation $5\cos\theta(1+\cos 2\theta)=4$ for $0^{\circ} \le \theta \le 360^{\circ}$. [5]
	.0
	C ²
	~

93. $9709_s16_qp_21$ Q: 2

Solve the equation $5 \tan 2\theta = 4 \cot \theta$ for $0^{\circ} < \theta < 180^{\circ}$.

[5]

94. 9709_s16_qp_22 Q: 4

(i) Show that $\sin(\theta + 60^\circ) + \sin(\theta + 120^\circ) \equiv (\sqrt{3})\cos\theta$. [3]

(ii) Hence

(a) find the exact value of $\sin 105^{\circ} + \sin 165^{\circ}$, [2]

(b) solve the equation $\sin(\theta + 60^\circ) + \sin(\theta + 120^\circ) = \sec \theta$ for $0^\circ \le \theta \le 180^\circ$. [3]

95. 9709_w16_qp_21 Q: 7

The polynomial p(x) is defined by

$$p(x) = ax^3 + 3x^2 + bx + 12,$$

where a and b are constants. It is given that (x + 3) is a factor of p(x). It is also given that the remainder is 18 when p(x) is divided by (x + 2).

- (i) Find the values of a and b. [5]
- (ii) When a and b have these values,
 - (a) show that the equation p(x) = 0 has exactly one real root, [4]
 - (b) solve the equation $p(\sec y) = 0$ for $-180^{\circ} < y < 180^{\circ}$. [3]

96. $9709_{\mathbf{w}}16_{\mathbf{q}}p_{\mathbf{2}}2$ Q: 7

The diagram shows the curve with parametric equations

$$x = 4\sin\theta$$
, $y = 1 + 3\cos\left(\theta + \frac{1}{6}\pi\right)$

for $0 \le \theta < 2\pi$.

- (i) Show that $\frac{dy}{dx}$ can be expressed in the form $k(1 + (\sqrt{3}) \tan \theta)$ where the exact value of k is to be determined. [5]
- (ii) Find the equation of the normal to the curve at the point where the curve crosses the positive y-axis. Give your answer in the form y = mx + c, where the constants m and c are exact. [5]

97. $9709_{\mathbf{w}}16_{\mathbf{q}}23$ Q: 7

- (i) Express $\sin 2\theta (3 \sec \theta + 4 \csc \theta)$ in the form $a \sin \theta + b \cos \theta$, where a and b are integers. [3]
- (ii) Hence express $\sin 2\theta (3 \sec \theta + 4 \csc \theta)$ in the form $R \sin(\theta + \alpha)$ where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$.
- (iii) Using the result of part (ii), solve the equation $\sin 2\theta (3 \sec \theta + 4 \csc \theta) = 7$ for $0^{\circ} \le \theta \le 360^{\circ}$.

98. $9709_s15_qp_22$ Q: 3

It is given that θ is an acute angle measured in degrees such that

$$2\sec^2\theta + 3\tan\theta = 22.$$

(i) Find the value of $\tan \theta$. [3]

(ii) Use an appropriate formula to find the exact value of $\tan(\theta + 135^{\circ})$. [3]

99. 9709_w15_qp_21 Q: 3

- (i) Express $8 \sin \theta + 15 \cos \theta$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α correct to 2 decimal places.
- (ii) Hence solve the equation

$$8\sin\theta + 15\cos\theta = 6$$

for
$$0^{\circ} \le \theta \le 360^{\circ}$$
. [4]

 $100.\ 9709_w15_qp_22\ Q:\ 4$

The polynomial p(x) is defined by

$$p(x) = 6x^3 + 11x^2 + ax + a,$$

where a is a constant. It is given that (x + 2) is a factor of p(x).

- (i) Use the factor theorem to show that a = -4. [2]
- (ii) When a = -4,
 - (a) factorise p(x) completely, [3]
 - **(b)** solve the equation $6 \sec^3 \theta + 11 \sec^2 \theta + a \sec \theta + a = 0$ for $0^\circ \le \theta \le 180^\circ$. [2]

 $101.\ 9709_w15_qp_23\ Q:\ 6$

- (i) Express $(\sqrt{5})\cos\theta 2\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. Give the value of α correct to 2 decimal places. [3]
- (ii) Hence
 - (a) solve the equation $(\sqrt{5})\cos\theta 2\sin\theta = 0.9$ for $0^{\circ} < \theta < 360^{\circ}$, [4]
 - (b) state the greatest and least values of

$$10 + (\sqrt{5})\cos\theta - 2\sin\theta$$

as θ varies. [2]

